If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35=-5t^2+20t+25
We move all terms to the left:
35-(-5t^2+20t+25)=0
We get rid of parentheses
5t^2-20t-25+35=0
We add all the numbers together, and all the variables
5t^2-20t+10=0
a = 5; b = -20; c = +10;
Δ = b2-4ac
Δ = -202-4·5·10
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{2}}{2*5}=\frac{20-10\sqrt{2}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{2}}{2*5}=\frac{20+10\sqrt{2}}{10} $
| 341=n-209 | | 169=q-265 | | 3=2/r | | 3(−3s−12)+40=−24s−41 | | 35.5=7c-3 | | 0.7y+1=-0.4 | | -16=8(4+p) | | 100=10+9b | | -138=6(1-3m) | | 1.61x10^-20=x(3x)^3 | | 7+j/6=10 | | 12n=24.A | | 5/6-2/3x=1/4 | | 4q-2=46 | | 8x=+6x+7= | | 7x-48=5x+20 | | 99=7r+1 | | 8/6=24/x | | 8/6=24/z | | 14=4m+10 | | -(n-7)-n=-8(6+ | | 20+h=42 | | 4/9m-1/3m+1/2=5/18 | | 115=5s | | 13+8x=53 | | 37=11+v | | -3–3x=-4(2x+7) | | -5/3w+7/2=-w-7/3 | | c-12=27 | | -4(x+2)=10 | | 1,2=3÷x | | 6=2m+14 |